首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   41篇
  2023年   7篇
  2022年   3篇
  2021年   16篇
  2020年   12篇
  2019年   14篇
  2018年   13篇
  2017年   14篇
  2016年   18篇
  2015年   26篇
  2014年   26篇
  2013年   31篇
  2012年   43篇
  2011年   57篇
  2010年   38篇
  2009年   23篇
  2008年   32篇
  2007年   33篇
  2006年   16篇
  2005年   23篇
  2004年   17篇
  2003年   18篇
  2002年   15篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有540条查询结果,搜索用时 15 毫秒
51.
Barocas A  Ilany A  Koren L  Kam M  Geffen E 《PloS one》2011,6(7):e22375

Background

In communal mammals the levels of social interaction among group members vary considerably. In recent years, biologists have realized that within-group interactions may affect survival of the group members. Several recent studies have demonstrated that the social integration of adult females is positively associated with infant survival, and female longevity is affected by the strength and stability of the individual social bonds. Our aim was to determine the social factors that influence adult longevity in social mammals.

Methodology/Principal Findings

As a model system, we studied the social rock hyrax (Procavia capensis), a plural breeder with low reproductive skew, whose groups are mainly composed of females. We applied network theory using 11 years of behavioral data to quantify the centrality of individuals within groups, and found adult longevity to be inversely correlated to the variance in centrality. In other words, animals in groups with more equal associations lived longer. Individual centrality was not correlated with longevity, implying that social tension may affect all group members and not only the weakest or less connected ones.

Conclusions/Significance

Our novel findings support previous studies emphasizing the adaptive value of social associations and the consequences of inequality among adults within social groups. However, contrary to previous studies, we suggest that it is not the number or strength of associations that an adult individual has (i.e. centrality) that is important, but the overall configuration of social relationships within the group (i.e. centrality SD) that is a key factor in influencing longevity.  相似文献   
52.
During postembryonic development of insects, sensorimotor pathways, which generate specific behaviors, undergo maturational changes. It is less clear whether such pathways are typically stable, or undergo further maturation, during the adult stage. In the present study, we have examined this issue by multilevel analysis of a simple model system, the escape behavior of the cockroach, from identified synapses to behavior. We show that the escape system is highly responsive immediately after the molt to adulthood, but that the latency of escape responses was not at its typical value immediately after the molt to adult. The latency of escape behavior increased over the first 30 days of adult life, perhaps indicating maturational adjustments of the escape sensorimotor pathway. The first station in the escape circuitry is the synaptic connections between the cercal wind receptors and the giant interneurons. We measured unitary excitatory synaptic potentials between single sensory neurons and an identified giant interneuron (GI(2)). We found a decrease in the synaptic strength between identified cercal hairs from a single column and GI(2) over the first month after the adult molt. Consequently, the latency and the number of action potentials of GI(2) in response to natural stimuli increased and decreased respectively during this time. Thus, we show that both behavioral performance and the wind sensitivity of GI(2) decreased over the first month after molt. We conclude that the cockroach escape system undergoes further sensorimotor maturation over a period of 1 month, and that cellular changes correlate with, or predict, some changes in behavioral performance.  相似文献   
53.
Tidal groundwater in a mangrove swamp can return to the mangrove creek by one of two mechanisms: (a) it can either flow through the swamp soil due to the water table difference between the creek and the groundwater in the swamp; or (b) it can flow via tidal flushing of animal burrows. This paper compares the magnitude of these two mechanisms for different regions of a mangrove swamp. Direct groundwater flow rates resulting from water stored in the sediment as a consequence of infiltration, especially during and after tidal inundation, were calculated for every square meter in the surface of a mangrove forest from piezometer data. Flow rates of water due to burrow flushing were determined based on published surveys, by estimating the burrow volume and the percentage of the burrow water that is flushed at each tidal inundation. Although direct groundwater flux was found to decrease further away from the creek compared to close to the creek, it was also found to have a similar range as burrow flushing flow. Specifically, direct groundwater flow ranged from 0.004 to 0.04 m3/m2/day, whilst burrow flushing flux ranged from 0.01 to 0.04 m3/m2/day.Considering the errors involved in the experiments and calculations, these ranges can be considered as being the same and neither of the two processes can be considered as negligible compared to the other. As a consequence, surveys of groundwater processes in mangrove areas, and more generally in swamp and tidal areas where animal burrows are present, will need to consider both mechanisms. Investigations of the influence over flushing mechanisms of different residence times of the water in burrows and in the sediment body would also be recommended in order to establish salt and nutrient budget in mangrove swamps.  相似文献   
54.
55.
56.
Gozuacik D  Kimchi A 《Autophagy》2006,2(2):74-79
The Death-Associated Protein kinase (DAPk) family contains three closely related serine/threonine kinases, named DAPk, ZIPk and DRP-1, which display a high degree of homology in their catalytic domains. The recent discovery of protein-protein interactions and kinase/substrate relationships among these family members suggests that the three kinases may form multi-protein complexes capable of transmitting apoptotic or autophagic cell death signals in response to various cellular stresses including the misregulated expression of oncogenes in pre-malignant cells. Several lines of evidence indicate that the most studied member of the family, DAPk, has tumor and metastasis suppressor properties. Here we present an overview of the data connecting the DAPk family of proteins to cell death and malignant transformation and discuss the possible involvement of the autophagic cell death-inducing capacity of DAPk in its tumor suppressor activity.  相似文献   
57.
58.
Lymphocyte arrest and spreading on ICAM-1-expressing APCs require activation of lymphocyte LFA-1 by TCR signals, but the conformational switches of this integrin during these critical processes are still elusive. Using Ab probes that distinguish between different LFA-1 conformations, we found that, unlike strong chemokine signals, potent TCR stimuli were insufficient to trigger LFA-1 extension or headpiece opening in primary human lymphocytes. Nevertheless, LFA-1 in these TCR-stimulated T cells became highly adhesive to both anchored and mobile surface-bound ICAM-1, although it failed to bind soluble ICAM-1 with measurable affinity. Rapid rearrangement of LFA-1 by immobilized ICAM-1 switched the integrin to an open headpiece conformation within numerous scattered submicron focal dots that did not readily collapse into a peripheral LFA-1 ring. Headpiece-activated LFA-1 microclusters were enriched with talin but were devoid of TCR and CD45. Notably, LFA-1 activation by TCR signals as well as subsequent T cell spreading on ICAM-1 took place independently of cytosolic Ca(2+). In contrast to LFA-1-activating chemokine signals, TCR activation of LFA-1 readily took place in the absence of external shear forces. LFA-1 activation by TCR signals also did not require internal myosin II forces but depended on intact actin cytoskeleton. Our results suggest that potent TCR signals fail to trigger LFA-1 headpiece activation unless the integrin first gets stabilized by surface-bound ICAM-1 within evenly scattered actin-dependent LFA-1 focal dots, the quantal units of TCR-stimulated T cell arrest and spreading on ICAM-1.  相似文献   
59.
It is now widely accepted that sites in a protein do not undergo independent evolutionary processes. The underlying assumption is that proteins are composed of conserved and variable linear domains, and thus rates at neighboring sites are correlated. In this paper, we comprehensively examine the performance of an autocorrelation model of evolutionary rates in protein sequences. We further develop a model in which the level of correlation between rates at adjacent sites is not equal at all sites of the protein. High correlation is expected, for example, in linear functional domains. On the other hand, when we consider nonlinear functional regions (e.g., active sites), low correlation is expected because the interaction between distant sites imposes independence of rates in the linear sequence. Our model is based on a hidden Markov model, which accounts for autocorrelation at certain regions of the protein and rate independence at others. We study the differences between the novel model and models which assume either independence or a fixed level of dependence throughout the protein. Using a diverse set of protein data sets we show that the novel model better fits most data sets. We further analyze the potassium-channel protein family and illustrate the relationship between the dependence of rates at adjacent sites and the tertiary structure of the protein.  相似文献   
60.
IL-23 is a heterodimeric cytokine comprising a p19 subunit associated with the IL-12/23p40 subunit. Like IL-12, IL-23 is expressed predominantly by activated dendritic cells (DCs) and phagocytic cells, and both cytokines induce IFN-gamma secretion by T cells. The induction of experimental autoimmune encephalitis, the animal model of multiple sclerosis (MS), occurs in mice lacking IL-12, but not in mice with targeted disruption of IL-23 or both IL-12 and IL-23. Thus, IL-23 expression in DCs may play an important role in the pathogenesis of human autoimmune diseases such as MS. We quantified the expression of IL-23 in monocyte-derived DCs in MS patients and healthy donors and found that DCs from MS patients secrete elevated amounts of IL-23 and express increased levels of IL-23p19 mRNA. Consistent with this abnormality, we found increased IL-17 production by T cells from MS patients. We then transfected monocyte-derived DCs from healthy donors with antisense oligonucleotides specific for the IL-23p19 and IL-12p35 genes and found potent suppression of gene expression and blockade of bioactive IL-23 and IL-12 production without affecting cellular viability or DCs maturation. Inhibition of IL-23 and IL-12 was associated with increased IL-10 and decreased TNF-alpha production. Furthermore, transfected DCs were poor allostimulators in the MLR. Our results demonstrate that an abnormal Th1 bias in DCs from MS patients related to IL-23 exists, and that antisense oligonucleotides specific to IL-23 can be used for immune modulation by targeting DC gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号